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Abstract

We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters
a.b,c are large. We indicate which cases are of interest for orthogonal polynomials (Jacobi, but also Meixner,
Krawtchouk, etc.), which results are already available and which cases need more attention. We also consider
a few examples of ;F> functions of unit argument, to explain which difficulties arise in these cases, when
standard integrals or differential equations are not available.
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1. Introduction

The Gauss hypergeometric function (see [1, chap. 15, 2, 30])

a, b ab a(a + l)b(b + 1 5 (a Il(b)ll
2 ozl =1 -z zm + Z - 1
2 ( c > + C + c(c+1)2! Z (¢)un! ()
where Pochhammer’s symbol (a), is defined by
I'(a+n) —a
a), = ——— =(=1)'n! , (2)
(a) I'(a) (-1 < ; )

and the infinite series in (1) is defined for |z] <1 and ¢ # 0,—1,-2,... .
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A simplification occurs when b = c:

b
2F1<ab )—(1"’)_" (3)

When a or b are non-positive integers the series in (1) will terminate, and F reduces to a polynomial.
We have

- . ( n)m(b)m _m ‘ IR n _(_b_)_'f'_ m
EF‘( ) Z ()l ‘:4_;)( v (m) (@ @

The value at z =1 is defined when R(c — a — b) > 0 and is given by

a b\ T(c)[(c—a-b)
2F‘<c J)‘r@—aw@—by ®)

For the polynomial case we have

-n, b _
2F) i1 _L b)", n=0,1,2,... . (6)
C (C)n

Generalizing, let p,g =0,1,2,... with p < ¢+ 1. Then
ai,.. (ai - ((1[, M
F,
e (bl ..... b ) Z (bl )n (bq)n
This series converges for all z if p<g+1 and for |z] <1 if p=g+ L.

Sometimes we know the value of a terminating function at z = 1, such as given by Saalschiitz’s
theorem,

—n,a,b _ _
3 1) = ez ahic =5 b)”, (8)
a,l+a+b~c—n (c),,(c-—a—b),,

where n=10,1,2,... .

The behavior of the Gauss hypergeometric function F(a,b;c;z) for large |z| follows from the
transformation formula

a, b. _I()(b—a) » a,a—c+1.1
F( : ’“)‘r_(bﬂ—_a)(“z’ S PR

_ bb—c+1
rc)(a mvﬁr%ﬂ( ¢ 1>’

n

—. (M

N

=

;= (€))
[(a)[(c—b) b—a+1 'z

where |ph(—z)| < 7, and from the expansion of the Gauss function given in (1).
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The asymptotic behavior of F(a, b;c;z) for the case that one or more of the parameters a, b or ¢
are large is more complicated (except when only ¢ is large). Several contributions in the literature
are available for the asymptotic expansions of functions of the type

2

(a—i—el)t, b+€2/1
| .

. ,z), e;=0,£1, 41— oc. (10)
c+ e ’

In this paper we give an overview of these results, and we show how this set of 26 cases can be
reduced by using several types of transformation formulas.

In particular we indicate which cases are of interest for orthogonal polynomials that can be
expressed in terms of the Gauss hypergeometric function. The Jacobi polynomial P,‘,x‘/“(x) is an
important example, and we mention several cases of this polynomial in which » is a large integer
and o and/or f} are large. When « or f3 is negative the zeros of PP (x) may be outside the interval
[ - 1,1], and for several cases we give the distribution of the zeros in the complex plane.

We mention a few recent papers where certain uniform expansions of the Gauss function are
given (in terms of Bessel functions and Airy functions), from which expansions the distribution of
the zeros can be obtained. Many cases need further investigations.

Of a completely different nature is the asymptotics of generalized hypergeometric functions. We
consider a few cases of 3F, terminating functions of argument 1 and —1, and show for these cases

some ad hoc methods. In general, no standard methods based on integrals or differential equations
exist for these quantities.

2. Asymptotics: a first example

Consider the asymptotics of

a, B+ A
lFl ) S Z 0, A — 0C. (11)
Y+ A
We use f+ A~ 7+ 4 and we try (using (3))
a, B+ 4 a, p+ 4
2F) sz~ F sz =(1—-2)"" (12)
y+ A B+ 2
Observe first that (see (5)), if R(y —a — ) > 0,
a, f+ A o
7, Pri \ _To+hlG=a=p) (13)
P+ A I'(y+i—-a)'(y—-p)

We see that (12) cannot hold for z ~ 1 (if R(y —a — ) > 0).




444 N.M. Temme | Journal of Computational and Applied Mathematics 153 (2003) 441462

However, we can use

a, b a, c—b z
gFl( ;Z>=(1——Z)-"2F1< ;C>, C:7_l~ (14)
c c “

This gives

a, f+4 a, y—f _
2F Caz = =2)"NF s
VA YA

N a(y =),  ata+ 1)y =By —-p+1)
— — )41 -
(1=2) {* 12 T GG A )2
B 7
=(1—-z)" [l + El-(—;:#(%— (“(/1“‘)} , (15)

as 4 — oc with z fixed. This is the beginning of a complete asymptotic expansion, which converges
if |z/(z = 1)| < 1. It is an asymptotic expansion for large values of 4, and all fixed z,z # 1.
We can also use other transformation formulae:

a, b , c—a, b
o F ;2 =(1—=z)7"F, 3¢
¢ ¢

s c—a, c—b
=(1 —z) 7 ""F, - (16)

¢

These give, with (14), the three relations

a B+ @i f
2 F) Cos oz =0 =z2)NF, L s¢
"))+A ’}'+/L

:(1“:)-/,7F1 ~}1+/1~—'(1, /;—}‘/2(
- ,}y+/l 2

Tt A—a v~ f3
=(1—zyhp a /;: : (17)
74

We see in (16) that the large parameter 4 can be distributed over other parameter places. In the
present case only the second form is suitable for giving an asymptotic expansion when using the
Gauss series. The third form gives a useless Gauss series (for large ). In the final form the Gauss
series converges at z =1 if R(a + - 7) > 0, but the series does not have an asymptotic property
for large values of 4.

The transformation formulae in (16) are an important tool for obtaining asymptotic expansions.
We will use these and other formulae for investigating all cases of (10).
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So far, we mention the power series of (1) for obtaining an asymptotic expansion. However, to
obtain an asymptotic expansion of (11) that holds uniformly if z is close to 1, we need a different
approach, as will be explained in later sections.

3. Some history and recent activities

1. Watson studied in [33] the cases

a+ A A a+ A -4 a, b
2F) .oz, 2F) - IR - (18)
Y+ 24 c Y+ 4

All results are of Poincaré type (i.e., negative powers of the large parameter A) and hold for
large domains of complex parameters and argument. Watson started with contour integrals and
evaluated them by the method of steepest descent.

. 2. Luke summarizes these results in [20, Vol. I, p. 235], and gives many other results, also for

higher ,F,-functions. In particular he investigates “extended Jacobi polynomials”, which are of

the type
—n, N+ Aa,....aq, (@), - (ay), 2
r2F, == (19)
- /( b],...,bq > Z(bl)n’ (bq)n n'
For p=0, g =1 and integer » this is the Jacobi polynomial.
3. Jones considers in [15] a uniform expansion of

a+4, f—4 ] 1
F Lok o)

and gives a complete asymptotic expansion in term of /-Bessel functions with error bounds.
Applications are discussed for Legendre functions.
4. Olde Daalhuis gives (see [22,23]) new uniform expansions of

a, p—4
JF -z (1)
YE A
in terms of parabolic cylinder functions, and of
oo+ A, 424
oF) s —Z (22)
c

in terms of Airy functions.

~ 5. Other recent contributions on uniform expansions for Gauss functions follow from [31] (Legen-

dre functions), [4] (Legendre functions), [28] (see later section), [10] (Legendre functions), [7]
(conical functions), [8] (Jacobi and Gegenbauer polynomials), [35] (Jacobi polynomials), [26]
(Pollaczek), [37] (Jacobi function), [13], (Meixner), [19] (Meixner), [18] (Krawtchouk), [14]
(Meixner-Pollaczek).

6. On Bessel polynomials, which are of ,Fy-type, see [38,9]. On Charlier polynomials, which are of
2Fy-type, see [25]. On Laguerre polynomials (,F,-type) see [11,29].



446 N.M. Temme | Journal of Computational and Applied Mathematics 153 (2003) 441-462
4. Large parameter cases

We investigate which cases of the 26 large parameter cases of the form

a+el b+el
2F| 5 N ej=0,i1, /1-'—>OO

3 Z 23
c+esh (23)
are of interest for asymptotic analysis (Table 1).
Skipping the dummy (0 0 0), using the symmetry between the a and b parameters:
a, b b, a
o F) ;2 =a2F A I (24)
¢ ¢
and by using the transformation formulae of (16) we reduce the 27 cases to the eight cases:
el € €3
1 0 0 +
2 0 0 -
3 0 + 0
4 0 + -
5 0 — +
6 - + _
7 + - 0
8 - - +

This set is obtained by using (24) and (16), that is, only four of Kummer’s 24 solutions of the
hypergeometric differential equation. A further reduction of the set of eight cases can be obtained

by other solutions of the differential equation.

Table |
All 27 cases of 2F (a+ el b+ erd;c+ed;z), e; =0,£1. In the table we write ¢, = 0,+

)

[

€’ el e €3 el e e
0 0 0 + 0 0 - 0 0
0 0 + + 0 + - 0 +
0 0 - + 0 — - 0 -
0 + 0 + + 0 - + 0
0 + + + + + - + +
0 + - + + - - + -
0 - 0 + - 0 - - 0
0 - + + - + - - +
0 - - + - — — - -
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Using the connection formula

a, b
2F) ; Z
c

_ Me-DMa—ct+DMb—c+l) ., (l-al=b
- OO =2 2F'( 2-¢

= ., Z

rb—c+Ila—c+1) a, b
+ oF 1=z, 25
Fatb—ct DIA-0> "\ atboc+1 (23)
we see that the second case (0 0 —) in fact reduces to (0 0 +).
Similarly, we have
a, b
2F) s Z
c
. — a, a—c+1
i _L@OMb=c+D) o .
I'a+b—c+ 1)I'(c—a) at+b—c+1 z
— l—a c—a |
+ F(C)F(b ¢ + 1) Zu—(’(l _Z)('—a—szl ’_' , (26)
F(@)I(b—a+1) b—a+1 'z
which reduces the third case (0 + 0) again to (0 0 +).
Finally, we use
a, b
oF) ; z
c
. — _ - l1—a, 1-5
e I'(c—1)I'(b—c+ 1)I(1 a)Z]_(,(1 zymahy R, .
I'(b)['(c—a)l(1—rc) 2 _¢
o T(l—a)[((b—c+1) ,_. s l—a, c—a |
(c—a)m a—c 1_ c—a 77F = , 27
te FA—olb—atl)” G720 0 (27)
which reduces the forth case (0 + —) to the fifth case (0 — +).
Consequently, we have the five remaining cases:
e (5] €3

O~ ON W —
| + 4+ o0

|+ 1 ©
o+ +
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These five cannot be reduced further by using relations between the functions

a+eir b+eld
F, ;z), e =0%xL (28)

,
Cc+ en

However [22], using

p (0w Or—a) (@ a-ctl
)T Tere—a" T a—bgr

bﬂndna—mﬂﬁﬁ,<hb—6+t
1

| —
N———

+e

[ ST

) ; (29)

Tal(c—-b" "'\ poa+1

and

a, b
oF -1
c

—ale=Mri F(C)F(b - a)z/,_u(l “”Z)C—“—bﬂFl 1-b, ¢c— bl
I'b)y'(c —a) - a—b+1 'z
o Ie)Y(a—b)y _. e l—a, c—a
_|_e(1 a)mi Z” (1 = z)° a >2F [ 30)
Fare b~ O 0 T (

we see that the cases (+ + —) and (— — +) both can be handled by the case (+ 2+ 0). Hence,
the smallest set is the following set of four:

€] () €3
A 0 0 +
B 0 - +
C + - 0
D + 2+ 0

if we accept the special case D

a+ i b+24
2F) - 31

c
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4.1. Quadratic transformations

for special combinations of the parameters a, b, ¢ other types of relations between ,F;— functions
exist. For example, we have the quadratic transformation

a, b la, b—1la 2
2F sz =0 —z)F | 7 2 )
<2b ) ( )" F, prt A4 (32)
For large a the left-hand side is of type
(+00)=0 + 0)=(00 +)=4, (33)

whereas the right-hand side is of type C =(+ — 0).

5. Which special functions are involved?
The next step is to indicate which special functions are associated with the above four cases.
5.1. Legendre functions

We have the Legendre function

(z + 1)(],‘2)/((2 _ 1)—(1,‘2)/1 v, v+1
1) = 2 (1 -z
) F— ) o ( i ~)> - (34)

Case A: (0 0 +).

We see that case 4 occurs when y — —oc. Several relations between the Legendre function and
the Gauss function give also the case u — +oc.

Case B: (0 — +).

Because

(- + =)=0 + -)=(0 - +)=8 (33)

(see the first relation of (16) and (27)), we see that case B occurs when in Pi(z) both parameters
v and u tend to +oo.

Case C: (+ — 0)=(— + 0).

This also occurs for P{(z), with v large and p fixed.

In the results for Legendre functions in the literature rather flexible conditions on the parameters
u and v are allowed. For example, in [7] it is assumed that the ratio v/u is bounded.

Any hypergeometric function, for which a quadratic transformation exists, can be expressed in
terms of Legendre functions. So, many special cases, and mixed versions of the cases 4,B,C,D are
possible for Legendre functions.

5.2. Hypergeometric polvnomials

Several orthogonal polynomials of hypergeometric type (see the Askey scheme in [16]) have rep-
resentations with Gauss hypergeometric functions. Next to the special cases of the Jacobi polynomials
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(Gegenbauer, Legendre) we have the following cases:

Pollaczek
, —n, +4+id(0) .
P,(cos 0;a,b) ="', F, ( B 7 s T—e 0, (36)
acost + b
A== (37)

For uniform expansions in terms of Airy functions see [26]. The asymptotics is for n — oo, 0=t/\/n
with ¢ bounded, and bounded away from zero.

Meixner-Pollaczek

, . —n, A+ix 4
PO ) = B e, ( 1o eM) . (3%)
n! 24

For uniform expansions in terms of parabolic cylinder functions see [19]. The asymptotics is for
n— oo, x =on with o in a compact interval containing the point o = 0.

Meixner

c

M,(x: B.c) = oF) (*"’ﬁ e 1) . (39)

In [13] two uniform expansions in terms of parabolic cylinder functions are given. The asymptotics
is for n — oo, x =an with o > 0 in compact intervals containing the point o = 1.

Krawtchouk

—n, —x ]
K,(x; p,N)=1F| ( ;—), n=0,1,2,...,N. (40)
—-N p

A uniform expansion in terms of parabolic cylinder functions is given in [18]. The asymptotics is
for n — oo, x = AN with 4 and v=n/N in compact intervals of (0,1).

5.3. Jacobi polynomials

The Jacobi polynomial has the representation:

n+o —n, a+f+n+1 1
PPix) = F) s5(1-x) ], (41)
n o+ 1 2
and we see that case C : (+ — 0)=(— + 0) applies if n — co. Uniform expansions use Bessel

functions for describing the asymptotic behaviour at the points x = +1 (Hilb-type formula, see [27]
or for complete asymptotic expansions [36]).
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A well-known limit is

3 —n/2 pla+1,b+) _x_ _ H,,(X)
tim o () = R @)

where H,(x) is the Hermite polynomial, a special case of the parabolic cylinder function. Approxi-
mations of H,(x) are available in terms of Airy functions.

Several other limits are known (see [16]). In [6,8] asymptotic expansions are given for large
positive parameters « and/or f.

Of particular interest are asymptotic expansions for large » and large negative values of the
parameters o, 8. See [3,21].

With o = f = —n we have in (41) the case

(— = =)=00-)=(00+)=4. (43)
These are non-classical values for the parameters. We have, taking oo = f = —% —n,
2] nlpl2 ==y =2m
P(z) = 252 G ) = (= 1)"2 TP (44)

m=

All zeros are on the imaginary axis.
Other representations can be used:

n—+o —h atnt+l, —f—n |
PPy = (1 +x> 2 F / (1 —x)
n 2 o+ 1 2

n+ B\ /1-x\"" ., ftn+l, —a—n |

and we see that case D : (+ 2+ 0) applies if n — oo and, in the first case, o is constant and S
equals b — 3n, and similarly in the second case.
See Fig. 1 for the zero distribution of the Jacobi polynomial

P’(Il./f)(z), n:30, CX:%, ﬁ:—3n+ 1. (46)

The case B:(0 — 4)=(— 0 +) applies in the representations

o+ p+2n -1\ —n, —o—n 2
PP(x) = < B ) <x . 1) SF ( 5 /3; 1——x>
n —2n — o — -
o+ f+2n " -n, —f—n 2
_ B (x—f—l) o : ’ (47)
n 2 2n—a-p 1+x

when o = —a — n, 8 = —b — 2n (first case) or § = —b — n,a = —a — 2n (second case), with, again,

non-classical parameter values. Ref. [23] gives an expansion of the Gauss function for this case in
terms of parabolic cylinder functions.
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3
Fig. 2. Zeros of P*(z). n=25, o= —n+ 1 p=—-2n+1.
See Fig. 2 for the zero distribution of the Jacobi polynomial
P}Il.li)(z), n=25 o=-n+ %, ﬁ =-2n+1. (48)

As n — oo, the zeros approach the curve defined by |1 — ((3 —z)/(1 +2))*| = 1.
Uniform expansions for Jacobi polynomials are available in terms of Bessel functions. Details on

uniform expansions of Jacobi polynomials in terms of Bessel functions can be found in [8,36], and
in cited references in these papers.

5.4. Gegenbauer polynomials

For Gegenbauer (ultraspherical) polynomials we have several representations. For example,

. 20), —-n, n+24 1
Citry = Z ., ), (49)
n! PR 2
and for 4= —n, n — oo, we have
(— = =)=00-)=(00+)=4. (50)

We also have

: . —n, n+ A
Gy, (x) = (=1)" %:Fl ( ;x2>, (51)

19f—
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and for A= —2n, n — oo, we have

(- - 0=+ — 0)=C. (52)

Also in this case a kind of quadratic transformation is used.

5.5. Asymptotics of the A-case

We give a few steps in deriving the expansion for the case 4 =(0 0 +). As always, we can use
the differential equation or an integral representation. We take

a, b F(C) 1 th—l(l _ t)v—h—-l
oF 5 = ds, 53
! ( ¢ Z> F(5)I(c - b) /0 (1 —zt) >3)
where e > Rb > 0, |ph(1 —z)| < 7. A simple transformation gives the Laplace transform represen-
tation

a, b . _ F(C—{—)_) 9 R
o (C+/1’ z) - r(b)F(C+;t~b)/0 e f(n)de, (54)

with 4 — oo and where

' h—1
f(t)= <e t_]> TN (1 =z ze7) . (55)

This standard form in asymptotics can be expanded by using Watson’s lemma (see [24] or [34]).
For fixed a,b,¢ and z:

a, b F(c+2) (b)y
zFl( ,z> et is b)Zf( ) (56)

c+ A

where f(z)=1 and other coefficients follow from

FO=>"fu2), || <minQm,|t]). f=1In . -

s=0

(57)

When z is large, the singularity #; is close to the origin, and the expansion becomes useless.
We can write

F a, b AN C(c+ 1) mt"—'e‘*’g(t)dt
TNexi ) TG+ i=b) Jy G+ T

(58)

z—1
{=~—ty=In P g(t) = (t + ) 1), (59)
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with ¢ regular at 7 = #. Expanding g(z) =%, g.(z)r* gives

a, b F(C+)L)§[’_" o .
oF sz~ (2D SUD +5,b—a+ 1+ 5,(4), 60
‘<c+a ) F(cﬂ_b);g()()g ( (60)

in which U is the confluent hypergeometric function. This expansion holds if 4 — oo, uniformly
with respect to small values of {, that is, large values of z.

This method can be used to obtain an expansion of the Legendre function PX"(z) for large values

of m; see [12], where we used this type of expansion for computing this Legendre function for large
m and z.

Other sources with related expansions for this type of Legendre functions are [4,7,10,24,31].

5.6. Another A-case

The case (— 0 0) is very important for all kinds of orthogonal polynomials and can be reduced
to the previous case 4= (0 0 +). It is of interest to give a direct approach of

—n, b
LF i z|, n— oo, (61)
c

whether or not » is an integer. First, we recall the limit

a, b a
lim ZF] N Z/b = 1F| s 2, (62)
h—oc c c

which may be used as a definition for the |F)-function (the Kummer or confluent hypergeometric
function). We are interested in the asymptotics behind this limit, and we expect a role of the Kummer
function when in (61) n becomes large, and z is small. We again can use (53), and consider

1
I, =f PN =) TN = a2)td, (63)
0
where e > Rb > 0, |ph(1 — z)| < n. We transform

l—tz=(1—z) =e"=3), (64)

Then we have

c—1
fy=(1-z)~"" [——ln(l - Z)} v

—Z

|
J,, — f(u)uh—l(l _ u)t'—h—leum du,
0

— _1———(—1_::21—'— bh—1 [ 1__(1__2)11—1 ](‘—h—l
o= I |

—uln(l —z) [ —w)n(l —z
w=n+ Din(l —z). (65)
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The function f'(u) is holomorphic in a neighborhood of [0, 1]. Singularities occur at

e |
M =142 ez {1}, (66)

u = ———
-2y In(1 —z)’

So, when z ranges through compacta of C \ {1}, the singularities of f are bounded away from
[0,1]. If Rw < O the dominant point in the integral is u=0; if Rw > 0, then u=1 is the dominant
point. To obtain an asymptotic expansion for large n that combines both cases, and which will give
a uniform expansion for all z, |z — 1| > 6 > 0, f should be expanded at both end-points 0 and 1.

More details can be found in [28], where the results have been applied to a class of polynomials
biorthogonal on the unit circle.

5.7. Asymptotics of the B-case

We consider a simple case

—n, 1 1
oF < nrjl—2 ; —z) (n+ 1)/0 (1 —1)(1 +z)]"dt, (67)
with z near the point 1.
We write
[(1 =) (1 +20)]" =", ¢(t) = —In[(1 — 1)(1 +z0)], (68)

and we have

Dtz —
(bl(f):( tz—1+z (69)

1 —t)(1+zt)

We see that the integrand has a peak value at 1) = (z — 1)/(2z).
So, if z=1 the peak is at t =0, if z > 1 then 7, €(0,1), and if z < 1 then # < 0. See Fig. 3.
The same situation occurs for the integral

o0
/ g1 yw? —ow) dw (70)
0

which has a peak value at wy =«. This integral is an error function (a special case of the parabolic
cylinder functions).

In a uniform expansion of (67) that holds for large » and z in a neighborhood of 1 we need an
error function. This explains why in Case B (in a more general form than (67) parabolic cylinder
functions may occur for special values of z.

We transform the integral in (67) by writing

(1 _ t)(l +Zt) — e—(l/?.)w3+1w (71)
with the conditions

t=0&w=0, t=1lw=c, [=HhESw=ao (72)
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e
1)
—_
2]
i
S

Fig. 3. (1 — ¢)(1 + z¢) for a few values of -.

The quantity « follows from satisfying the matching of 7, with «

(1= to)(1 4 zty) = e~ 2o, (73)
giving
, -1V . .
—o = —In [1 — (z " 1) , sign(x)=sign(z — 1). (74)
We obtain
—n, 1 e 21— e
2F-l R (l’I + 1)/ e—n((l 2w “““)f(w)dw, (75)
n+2 0
where
dt - w—o (1 —t)(142z2t)
=— = ) 76
S dw -1 2z (76)
A first approximation follows by replacing f(w) by
. 1+:z
a)= R 77
S(a) >3- (77)
giving
—n, 1 ] vd s
oF ;—z an(a)/ e (12 =)
n+2 0
_ 1+z —(1.2)n%?
=\ ——e erfc(—oy/n/2). (78)

as n — o<, uniformly with respect to z in a neighborhood of z = 1.

This expansion is in agreement with the general case >F|(a,b — ;¢ + 4; —z) considered in [23].
The relation with the Jacobi polynomials is

—An, 1 | —Zz
oF, =z | = (nﬁ—i:] )'(1 + z)”Pf,”*"“"‘” (——1 ‘) . (79)
n+2 225 ), 1 +z
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e ® ® o

° ® — 0.5

Fig. 4. Zeros of Py""(z), n=30,0=—f=n+ 1.

See Fig. 4 for the distribution of the zeros of
P,(’:c./ﬁ)(z), 7’1:30, a=n+1, ﬁ:-n—_ 1. (80)

As n — o0, the zeros approach the curve |1 — z*| = 1.

6. Asymptotics of some ;F, polynomials

In the previous examples we used integral representations of the Gauss function. The differential
equation can also be used for obtaining asymptotic expansions. As a rule, methods based on differ-
ential equations provide more information on the coefficients and remainders in the expansions than
methods based on integral representations.

For the generalized hypergeometric functions standard asymptotic expansion are known when the
argument z is large, and the other parameters are fixed; see [5,20].

For the ,F,-functions a differential equation is available of order max(p,q + 1). However, for
higher order equations no methods are available for deriving (uniform) expansions for large values
of parameters.

The ,F,-functions can be written as a Mellin-Barnes contour integral, but, again, no methods are
available for deriving (uniform) expansions for large values of parameters from these integrals.

The terminating ,F,-functions (one of the parameters a; is equal to a non-positive integer) and
of unit argument (z = 1) are of great interest in special function theory and in applications.

In many cases recursion relations are available. For the examples to be considered here we use
ad hoc methods. It is of interest to investigate recursion methods for the same and other problems.

6.1. A first example

As a first example [17], consider the asymptotics of

_ 1
f(")=3Fz< s ;—1). (81)
—n

1
1

[STE

19—
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It was conjectured (by Larcombe) that lim,_.. f(n) =2 and Koornwinder gave a proof. By using
(7) and replacing a ratio of Pochhammer symbols by an integral:

(%)k _ (=1)n!
%_;,),\__\/Ef(n-i-%) 0

k=0,1,...,n, we can write f(n) as an integral

1
t/\’—l 2(1 _ t)n-—k—] 2dt, (82)

NI S S S .
Jn)= /l" (=)' " o | 4t
71'(%),, 0 l %‘I‘l -1
and the Gauss function is a Legendre polynomial. We obtain
27"nln!l 7 1
)= ——— in" 0P, | — | do. 84
f(n) TC(%)H(]E)H /0 o (Sln0> ( )

There is no straightforward way to obtain asymptotics out of this. A few manipulations with (84)
give the result

n'n!n!
Jn) = —5——cq, (85)
2155

where ¢, is the coefficient in the Bessel function expansion

[e" L/ 2)) =D am’, (86)

n=0
and now the asymptotics easily follows. We have
L[ h(w/2)) 1 / e
= —_— = — ) N 87
27 % W;H—l dw 271 % WNH f(w)dw ( )

where

SOv)=[e™" *Ly(w/2)]) (88)

and the contour % is a circle around the origin. The main contribution comes from the saddle point
of e**w™", that is from w = wy = n/2. Because f(wp) ~ 2/(nn), we have

2 2/1
Cp~ — =, =0 (89)
n n!

This gives finally f(n) ~ 2. A complete asymptotic expansion follows by using more terms in the
expansion of f(w) at w = wj.

6.2. Generalizing Kummer's identity

Kummer’s identity reads:

, b _
:Fl( a ;_1>_r(1+a BYL(1 + a/2)

= , (90)
l+a—5b I'(l+a)(14+a/2—b)
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where 1 +a — b #0,—1,-2,... . A generalization [32] is written in the form
a+n, b I'(a —b)Y[(a/2 +1/2) I'(a—b)(a/2)
F ;=1 =P(n _— 91
: (H—a——b ) " r@raz+ 12— 5 2 F@raz - b) 5
Vidunas showed that, for n=—1,0,1,2,...,(a), #0and a — b #0,—1,-2,...
L (b e
P(")='27+—,3F2 iy 31
1 _—%n’ _%n - "15’ b
——Eze ) LR E
__n, .2_
1 1, ] i
I’l-f—l '——I’I"{—-,, "':,_‘”l, §a+3~b
O(n)= T3 2( ’ N ;1
3 3a+ 3
| (it <lnb
= 1 oF, S, (92)
n,o 3+ s

We are interested in the asymptotic behavior of P(rn) and Q(n) for large values of n. Using, if
Rd > Re > 1,

(% __ I [
(@)~ T@d=ol©) Jy

tz/—c—l(l _ t)c+k~l df, (93)

and a few manipulations of the Gauss functions, we obtain the integral representations, for
Ra > R2b > 0,
2-nr 1 o ,
P(n)= _—ﬂ—/ sinh™2*~' () cosh™*~" (¢) cosh(n + 1)t dt,
r'b)yI'(za—»5b) Jo
2'"F(%a—|— l) OO

ForCat -5 Js sinh“ ™"~ !(¢) cosh™~"(¢) sinh(n + 1)z dz. (94)

O(n) =

We can use standard methods for obtaining the asymptotic behavior of these integrals. First we write
the hyperbolic functions cosh(n 4+ 1)t and sinh(n + 1)t as exponential functions.
We obtain for n — o

2%-tr b+ ik
P(n) ~ (3a) ZA (b+3k)

I"(b)I"(; . b) nb+l, Z)A ’
22b=1rita 44 5) ro+4 5k)
Qn) ~ : Z Ck b2k (95)

re)r(a+i-
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where
C():l, C| =0, Cz:%(Sb*4a+3) (96)
These expansions are not valid for b = %a, b= %a + % respectively. In these cases we have
1 n+1
P(n) =23 Qn) = =7 97)

as follows from (92). Similar for the cases
b=1a+m, b=la+s+m m=012,... . (98)

For negative values of n different integral representations should be used. We have

(lvéa)u —%n" "%n“i"%a %l"h
P(—n—1)=2" —=—3F ) T S IS

R
,,(%'%a)n “%}’l‘f‘%, w'_li’1+l" %(1+%*h
Q(“n B 1): 2 (.1 _- )n 3F2 3 1a + L 12 :1 . (99)

with the integral representations

2" 11— b) /““’" I
4]

1 , 1 cos tsin™ f cosntde,
(50— bYL(l — 3a) .

P(—-n—-1)=

2/:9][‘(1 ﬂ/’)) (1 2 | §
n—=1)= — cos" 4 sin® ! sinmedr. 100
O D= R T i T /,. (e

By integrating on contours (inc, () U (0, %n)U(%n, %rc + 1~ ), similar integrals arise as in (94), and
again standard methods can be used for obtaining the asymptotic behavior.

7. Concluding remarks

1. The asymptotic analysis of all 26 cases in
a + (’1/1, ) + (’3/1
2F ) sz, e, =011, (101)
¢+ ess

can be reduced to the four cases

(@] o €3
A 0 0 +
B 0 +
C + 0
D i 24 0
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2. These cases are of interest for orthogonal polynomials and special functions.

3. New recent results on uniform asymptotic expansions have been published or announced for
special cases.

4. The distribution of the zeros of Jacobi polynomials for non-classical values of the parameters «

and 8 shows interesting features. New research is needed for describing the asymptotics of these
distributions.

5. The asymptotics of ;F, terminating functions with large parameters is quite difficult. Standard
methods based on integrals and differential equations are not available. Recursion relations may
be explored further.
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